Napredno mašinsko učenje

Napredno mašinsko učenje

Uključene obrazovne institucije

Elektrotehnički fakultet / Fakultet organizacionih nauka, Univerzitet u Beogradu

Dostupan u okviru programa

Master 4.0: Napredne informacione tehnologije u digitalnoj transformaciji (izborni)

Kratki program studija: Analiza podataka (izborni)

Kratki program studija: Informacione tehnologije (izborni)

Upoznavanje sa modelima za predviđanje kada podaci nisu nezavisni, već se može eksploatisati struktura, ili se predviđati kompleksni izlazi. Razumevanje potreba za ovakvim modelima i načina funkcionisanja algoritama. Razumevanje razlika između algoritama, kao i načina za evaluaciju ovakvim modela. Istraživanje oblasti gde su takvi modeli potrebni, poput analize teksta, vremenskih serija, prostorno- vremenskih podataka, društvenih mreža, bioinformatike, anlize slika, itd.

Studenti su sposobni da prepoznaju probleme u kojima je moguće eksploatisati postojeću strukturu u podacima, kako bi se poboljšali modeli za predviđanje. Studenti su sposobni da izaberu adekvatne modele, nauče ih iz podataka i evaluiraju njihov kvalitet. Studenti mogu da eksperimentalno pokažu unapređenje koje ovakvi modeli donose u odnosu na tradicionalne modele mašinskog učenja. Takođe, mogu da diskutuju o nedostacima metoda, i da predlažu unapređenja.

– Nestrukturni (tradicionalni) modeli za predviđanje

– Probabilistički grafovski modeli (PGM) i Bajesovo rezonovanje

– Skriveni markovljevi modeli (HMM) i primene

– Linearna Uslovna slučajna polja (CRF)i primene

– Otkrivanje strukture u probabilističkim modelima

– Nelinearna redukcija dimenzionalnosti

– Ugneždene reprezentacije (Embedding) podataka sa strukturom, i primene

– Gausova uslovna slučajna polja (GCRF)